'Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition.
نویسندگان
چکیده
We pursued studies to determine the effects of the metabolic syndrome (MetS) on brain, and the possibility of modulating these effects by dietary interventions. In addition, we have assessed potential mechanisms by which brain metabolic disorders can impact synaptic plasticity and cognition. We report that high-dietary fructose consumption leads to an increase in insulin resistance index, and insulin and triglyceride levels, which characterize MetS. Rats fed on an n-3 deficient diet showed memory deficits in a Barnes maze, which were further exacerbated by fructose intake. In turn, an n-3 deficient diet and fructose interventions disrupted insulin receptor signalling in hippocampus as evidenced by a decrease in phosphorylation of the insulin receptor and its downstream effector Akt. We found that high fructose consumption with an n-3 deficient diet disrupts membrane homeostasis as evidenced by an increase in the ratio of n-6/n-3 fatty acids and levels of 4-hydroxynonenal, a marker of lipid peroxidation. Disturbances in brain energy metabolism due to n-3 deficiency and fructose treatments were evidenced by a significant decrease in AMPK phosphorylation and its upstream modulator LKB1 as well as a decrease in Sir2 levels. The decrease in phosphorylation of CREB, synapsin I and synaptophysin levels by n-3 deficiency and fructose shows the impact of metabolic dysfunction on synaptic plasticity. All parameters of metabolic dysfunction related to the fructose treatment were ameliorated by the presence of dietary n-3 fatty acid. Results showed that dietary n-3 fatty acid deficiency elevates the vulnerability to metabolic dysfunction and impaired cognitive functions by modulating insulin receptor signalling and synaptic plasticity.
منابع مشابه
Dietary Omega-3 Fatty Acid Deficiency and High Fructose intake in the Development of Metabolic Syndrome Brain, Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease
Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin r...
متن کاملHormonal and metabolic effects of polyunsaturated fatty acid (omega-3) on polycystic ovary syndrome induced rats under diet
Objective(s): PCOS (polycystic ovary syndrome) produces symptoms in approximately 5% to 10% of women of reproductive age (12–45 years old). It is thought to be one of the leading causes of female subfertility. This study aimed to confirm the role of nutrition containing omega-3 (polyunsaturated fatty acid) on control of experimental PCO induced by estradiol-valerat in rats. Materials and Method...
متن کاملتأثیر مکمل اسید چرب امگا 3 بر سندرم متابولیک در سالمندان ساکن آسایشگاه کهریزک: کارآزمایی بالینی دوسو کور
Background: Metabolic syndrome is a cluster of disorders which altogether increase the risk of cardiovascular disease and type 2 Diabetes. We evaluated the effect of consumption of Omega-3 Fatty Acids on different components of this syndrome. Methods: This was a double blind placebo controlled clinical trial on 199 elderly residents of Kahrizak charity foundation in Tehran. Participants were ...
متن کاملSoy Isoflavone Genistein Is a Potential Agent for Metabolic Syndrome Treatment: A Narrative Review
Metabolic syndrome has a high prevalence (about 22.4% in adult individuals) in developed countries. Inflammation due to obesity and fat accumulation is the most important factor in the progression of metabolic syndrome. In cells which have a receptor for insulin hormone, inflammatory mediators target the insulin signaling pathway and cause insulin resistance. Peroxisome proliferator-activated r...
متن کاملDoes Omega-3 Fatty Acid Supplementation Have Beneficial Effects on Plasma Homocysteine, Insulin Resistance and Lipid Profile of Type 2 Diabetic Patients? A Randomized Clinical Trial
Background: This study was conducted to determine the effects of n-3 PUFAs supplementation on plasma homocysteine (Hcy) level, lipid profile and insulin resistance in patients with type 2 diabetes (T2D). Methods: This study is a double-blind controlled trial involving 70 patients with T2D selected from Yazd Diabetes Research Center in 2013. Patients were randomly assigned to receive either 2 g/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 590 10 شماره
صفحات -
تاریخ انتشار 2012